Do-calculus enables estimation of causal effects in partially observed
biomolecular pathways
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Abstract

Estimating causal queries, such as changes in pro-
tein abundance in response to a perturbation, is a
fundamental task in the analysis of biomolecular
pathways. The estimation requires experimental
measurements on the pathway components. How-
ever, in practice many pathway components are
left unobserved (latent) because they are either
unknown, or difficult to measure. Latent vari-
able models (LVMs) are well-suited for model-
ing such partially observed pathways. Unfortu-
nately, LVM-based estimation of causal queries
can be inaccurate when parameters of the latent
variables are not uniquely identified during train-
ing, or when the number of true latent variables
is misspecified. This so far has limited the use
of LVMs for causal inference from biomolecu-
lar pathways. In this manuscript we propose a
general and practical approach for LVM-based
estimation of causal queries. We prove that, de-
spite the challenges above, LVM-based estimators
of causal queries are accurate if the queries are
identifiable according to Pearl’s do-calculus. We
further provide an open-source implementation
evaluating whether a causal query is identifiable,
and describe an algorithm for its estimation. The
proposed approach opens the door for causal infer-
ence in a broad variety of biomolecular pathways.
We illustrate the breadth and the practical utility
of this approach for estimating causal queries in
four case studies with varying complexity.
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1. Introduction

Biomolecular pathways are governed by intricate patterns of
controls such as signaling, gene regulation, and metabolic
reactions. Biomolecular pathways are often represented
as graphs, where nodes are signaling proteins, genes, tran-
scripts or metabolites, and directed edges are causal regula-
tory relationships. The graph-based representations are use-
ful for simulating wet lab perturbations, and answering, in
silico, causal queries of the form “when we perturb X, what
is the effect on its descendent Y 7. However, estimation of
causal queries requires more than a qualitative topology of
the graph. It also requires experimental measurements on
the nodes of the graph, in order to quantitatively characterize
the causal relationships and estimate their parameters (Pearl,
2009).

Unfortunately, no measurement modality can currently cap-
ture all the molecular components of a pathway. The incom-
plete data arise in at least two general, ubiquitous scenarios.
The first occurs when components of a biomolecular path-
way are not fully known. For example, there may be empiri-
cal evidence for the regulation of an enzyme, but the identity
of the molecule or protein that regulates the enzyme may
be unknown (Cannon et al.). The second scenario occurs
when, due to limitations of the measurement techniques,
some pathway components are unobserved. For example,
antibodies for a protein may not be available. Alternatively,
while RNA abundances may be characterized, levels of the
corresponding protein or the state of its post-translational
modifications may be unknown (McNaughton et al.).

Latent variable models (LVMs) are particularly useful for
representing biological pathways with partially known
topology or missing measurements of pathway compo-
nents (Durbin et al.; Kondofersky et al.; Ernst et al.; St John
et al.; Shojaie & Michailidis). LVMs are probabilistic mod-
els of a joint distribution on a set of observed and unob-
served variables. A broad class of LVMs have a directed
acyclic graphical (DAG) structure. LVM-based estimation
of a causal query proceeds by removing edges in the DAG
that point to the target of intervention. Trained on obser-
vational data once, an LVM can estimate multiple causal
queries corresponding to multiple mutilated versions of the



original DAG.

There currently exists some controversy as to whether LVM-
based estimation of causal queries is accurate. One argu-
ment against this approach is that the parameters of the
LVM may not be uniquely identified from the observed
data (Shpitser et al., 2014). Another argument is that the
number of latent variables may be misspecified (Shpitser
etal., 2012). As a result, currently accepted approaches to
LVM-based causal query estimation are limited to LVMs
with specialized structural properties, such as the existence
of proxy variables (Louizos et al., 2017; Kuroki & Pearl,
2014), or the presence of multiple causes and no unob-
served confounders, (i.e., no hidden regulators of cause and
effect) (Wang & Blei, 2019). The latter approach is not
correct in general and requires strong parametric assump-
tions (D’ Amour, 2019). Since biomolecular pathways have
complex and diverse topology, are frequently large-scale,
and have many (possibly unknown) latent variables, the
controversy has so far limited the use of LVM for causal
inference in this context.

In this manuscript, we argue that LVM-based estimators
of causal queries are in fact accurate when the queries are
identifiable according to Pearl’s do-calculus. We show that
the estimated probability distribution associated with the
causal query converges to the true distribution, and that
the estimate of its expected value is consistent. This holds
even when the parameters of the model are not uniquely
identified, or when the true number of the latent variables
is unknown. We provide an open-source implementation
for evaluating whether a causal query is identifiable, and
describe a simple and practical algorithm for its estimation.

We demonstrate the breadth of applicability, and the prac-
tical utility of LVM-based estimation of identifiable causal
queries of biomolecular pathways in four case studies of
varying complexity. The first two case studies consider
network motifs frequently occurring in the transcriptional
regulatory network of Escherichia coli. The second two
case studies focus on human signaling pathways, where in-
formation about a stimulus at the cell surface is transmitted
via series of protein-protein interactions, in order to activate
or repress a set of transcription factors in the nucleus. The
case studies demonstrate the accurate and consistent esti-
mation of causal effects, even when some components of
the network motif are unknown or cannot be experimentally
quantified.

2. Background
2.1. Notation

Let V = {V4, ..., V;} be a set of observed random variables,
and U = {Uy,...,UL} be a set of latent variables. Let v;
be an instance of V;, and v = {v1,...,v;} an instance of

V. Let P(v1,...,v;) be the joint probability distribution
of the event V = v, and let P(V; = v;|V; = v;) be the
conditional probability distribution for the event V; = v;
given V; = v;. Denote P(U) the prior distribution over
all the latent variables, and P(U]| {vi}ﬁil) the posterior
distribution over all latent variables U given N observa-
tions of V. In this manuscript, we simplify the notation
for the marginalized joint distribution [ P(U,V)du as
P(V). Let G be a DAG with nodes V U U, where Pa(V})
denotes the parents of a node V; in G. The joint distribu-
tion between variables V U U in DAG G is formulated as,
P(U,V) =TT;_, P(V;|Pa(V;) TTi, P(UiPa(Uh)).

2.2. Latent variable models

A latent variable model (LVM) is a probability distribution
over two sets of variables V, U, where V are observed
at the learning time, and U are not observed. LVMs are
generative, in the sense that they allow us to sample from
the joint distribution of all the variables. A broad class of
LVMs have a directed acyclic graphical (DAG) structure.
Canonical examples of them include topic models, hidden
Markov models, Gaussian mixture models (Blei, 2014), and
deep generative latent variable models such as variational
autoencoders (Kingma & Welling, 2014).

A causal LVM is an LVM with DAG structure where Pa(V;)
are interpreted as direct causes of V;. In Bayesian frame-
work, parameter vector § of the causal LVM are assigned
prior probability distributions, and are absorbed into the set
of latent variables denoted by  C U.

Given a causal LVM with a DAG structure GG, observed
variables V, and latent variables U, (Evans, 2016) offers
the following simplification rules to compactly represent
LVMs with many latent variables by LVMs that only in-
clude a single latent variable between each pair of observed
variables.

¢ We can remove latent variables with no children.

* We can remove a latent variable U with observable par-
ents by connecting all the parents of U to its children.

o If U, W are latent variables with children(W) C
children(U), then we can remove W.

Fig. 1 (a) is a causal LVM with many latent variables. Fig. 1
(b) is a causal LVM obtained from (a) by applying simplifi-
cation rules. Fig. 1 (c) is an acyclic directed mixed graph
(ADMG) (Richardson et al., 2017) representing Fig. 1 (a)
and (b). It shows the existence of latent variables between
X1 and X5 by a dashed bidirected edge.

Inference algorithms such as belief propagation (Pearl,
2014; Lauritzen & Spiegelhalter, 1988) and variable elimi-
nation(Shpitser et al., 2012), exact sampling techniques such
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Figure 1. (a) An LVM with 4 observed (white) and 5 latent (dark
grey) variables. (b) A different LVM with 1 latent variable. (c) An
ADMG representing both (a) and (b).

as Hamiltonian Monte Carlo (HMC) (Girolami & Calder-
head, 2011; Duane et al., 1987), and approximate gradient-
based optimization methods such as stochastic variational
inference (SVI) (Hoffman et al., 2013) sample from the
posterior distribution P (U] {vl}f\il) of latent variables in
the ADMG, including the parameters 6, given N observa-
tions of V. Exact sampling-based algorithms such as HMC
guarantee asymptotically exact samples, but are computa-
tionally expensive (Robert & Casella, 2004). Approximate
probabilistic inference algorithms such as variational infer-
ence (Wainwright & Jordan, 2008; Bishop, 2006; Hoffman
et al., 2013; Blei et al., 2017) trade off accuracy for speed
by searching with gradient descent a parameterized family
of functions that approximate the target distribution.

2.3. Causal inference

Frequently, we are interested in an intervention on a set
of target variables X C V which fixes a set of variables
X to constant values x (denoted do(x) by (Pearl, 1995)),
and makes it independent of its causes (Spirtes et al., 2000;
Eberhardt & Scheines, 2007). Graph mutilation in a causal
LVM simulates an intervention. It severs the edges incom-
ing to the target nodes, and fixes each node X; € X to
its intervention value z; € x (Koller & Friedman, 2009).
We denote Gx as the graph resulting from removing all
incoming edges to nodes X and P, (v) the probability
distribution encoded by G .

A causal query Q) is a probabilistic query that conditions
a set of outcomes Y C V\X on a set of interventions,
such as Qx = P(Y|do(x)) or Qx = E[Y|do(x)]. Sam-
pling from P(Y|do(x)) is achieved by applying algorith-
mic inference to Gx and sampling from Pg, (Y|x). To
denote the value of the outcome variable obtained from
a mutilated model that was trained on observational data,
we must use counterfactual subscript notation Y go(x/) ~
P(Y go(xy{i, yi 1Y) to distinguish the value Ydo(x’) Oof
an outcome variable given an intervention do(x’) from an
observation of x and y in the training data.

A causal query Qy is identifiable with respect to P(V') and
an ADMG A, if all LVMs that project onto A and agree on
P(v) also agree on the value of QQx (Shpitser & Pearl, 2008).
A causal query is identifiable if it satisfies the back-door
or the front-door criteria. The back-door criterion (Pearl,
2009) holds for X,Y € V in ADMG A if there is no path
from X to Y consisting of bidirected edges, and there exists
aset Z C V\{X,Y} such that no node is a descendant of
X, and Z blocks every path between X and Y that contains
an arrow into X (Pearl, 2009). The front-door criterion
(Pearl, 2009) holds when there is an unobserved confounder,
but there exists a mediator between cause and effect that is
shielded from confounding (Pearl, 2009; 1993; 1995). For
example, the back-door criterion or the front-door criterion
does not hold in Fig. 2 (a) or (b), but the front-door criterion
holds in Fig. 2(b).

The back-door and front-door criteria are sufficient but not
necessary for causal identifiability. The do-calculus, com-
prised of three graph-mutilation-based rules (Pearl, 2009), is
necessary and sufficient for causal identifiability. A causal
query containing a do() operator is identifiable if the do-
calculus transforms it into an equivalent do-free estimand.
The do-calculus estimands are non-parametric, in the sense
that they do not impose constraints on P(x).

Several sound and complete algorithms take as input an
ADMG and a causal query, and determine whether the
query is identifiable according to the do-calculus (Richard-
son et al., 2017; Shpitser & Pearl, 2008). For example, the
causal query P(y|do(x)) in the causal LVM in Fig. 2(a) is
not identifiable according to the do-calculus but is identi-
fiable in Fig. 2(b). If the query is identifiable, these algo-
rithms generate an estimand computable from observational
data (Huang & Valtorta, 2006; Shpitser & Pearl, 2006). Any
causal query in an ADMG identifiable by the do-calculus is
also identifiable in every causal LVM that projects onto that
ADMBG (Richardson et al., 2017).

There exist several implementations of the identification
algorithm, however each has a different limitation that ham-
pers its utility. Causal Fusion (Bareinboim & Pearl, 2016)
generates a symbolic representation of the probabilistic es-
timand, and the means to estimate the estimand from data,
but it is closed source. CausalEffect (Tikka & Karvanen,
2017) generates a symbolic representation of the probabilis-
tic estimand, but it does not provide the means to learn the
estimand from data. Ananke (Bhattacharya et al., 2020)
generates an influence function that can be used to learn
the estimand from data, but it does not generate a symbolic
representation of the probabilistic estimand.

2.4. Causal query estimation

For queries of a form of P(Y|do(x)), a desirable property of
the estimator is the convergence of the estimated probability



distribution to the true probability distribution. For queries
of a form of F(Y|do(x), a desirable property of the estima-
tor is consistency. An estimator of E[Y|do(x)] is consistent
if, as the number of data points used to estimate the query
tends to infinity, the sequence of the estimates of the causal
query converges in probability to its expected value.

Several non-LVM approaches for estimating causal queries
with these desirable properties exist. These approaches de-
rive a separate statistical estimand for each causal query
anew (Pearl, 2019). Unfortunately, the scope of their appli-
cability is somewhat limited. Some of the approaches are
restricted to causal queries with one cause and one effect,
and the cause must be binary-valued (Bhattacharya et al.,
2020). Others are inadequate in large data regimes where
it is computationally expensive to train a new estimator for
each query of interest (Jung et al., 2020; 2021).

Below we demonstrate that if the graph topology of an LVM
correctly reflects the true underlying causal structure of the
observed variables, and if the causal query of interest is iden-
tifiable according to Pearl’s do-calculus, then LVM-based
estimators have the desired properties. Since LVM-based
approach for estimating causal queries is not limited in the
number of cause and effects and the type of their distribu-
tions, and since it can estimate multiple causal queries from
a single LVM training, it is applicable to a much broader set
of circumstances. It is particularly useful for probabilistic
causal reasoning in larger biomolecular pathways, where
the true latent structure may be unknown, and where models
are expensive to train and maintain.

3. Methods

3.1. LVM-based estimation of identifiable causal queries

The proposed approach (Algorithm 1) takes as inputs a
causal query of interest, target values of the intervention,
effects of the intervention, and an LVM trained with an ex-
act sampling based inference algorithm. It first determines
whether the causal query of interest is identifiable accord-
ing to Pearl’s do-calculus (line 1). This is done with an
identification algorithm implementation such as in Causal
Fusion, CausalEffect, or Ananke. We advocate the use of
the Y, causal reasoning engine introduced in this manuscript
(Sec. 3.4). If the query is not identifiable, we do not proceed
(line 2).

If the query is identifiable, Algorithm 1 proceeds with its
estimation. We take a Bayesian viewpoint (Lattimore & Ro-
hde, 2019a;b), and follow the abduction, action, prediction
paradigm (Pearl, 2009). Abduction estimates the posterior
distribution over the latent variables (including the model
parameters) given the training data. A trained LVM, includ-
ing these posterior distributions, is an input to Algorithm 1.
Action fixes the values of the intervened variables (line 5)
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Figure 2. The estimates of distribution of an identifiable causal
query P(Y|do(x’)) (Figures to the right) converges to the true
distribution as number of data points increases but it fails to to
do so for a not identifiable causal query (Figures to the left) (a)
An LVM where P(Y |do(x")) is not non-parametrically identified.
Boxes indicate sets of variables with the same structure. Circular
white/gray nodes are observed/latent variables. 6’ are model pa-
rameters. Each parameter such as 6, has a prior distribution, e.g.
0y ~ P(q% ), where Qey, is ahyperparameter. (b) As in (a), but in
this case P(Y'|do(x")) is non-parametrically identified. (c,e) relate
to (a). Black curve estimates the true distribution P(Y |do(x’); 9),
with 6 used to generate interventional data. After training the LVM
on N = 10, 100 observational datapoints, each gray/green curve
estimate Py;_(Yao(x'y; {4, yi Y1, 0) for each sampled 6. The
curves do not approach the true distribution as number of data
points increases. (d,f) relate to (b). The curves converge to the true
distribution as the number of data points increases.

and breaks the relationship of the intervened variables to
their parents (line 6). Prediction samples the parameters
from their posterior distributions (line 8), and then samples
from each variable given its parents (line 10) until we are
ready to estimate the causal query (line 14). Thus the esti-
mator can be thought of as a posterior predictive statistic
over the marginal of the parameters.

3.2. Motivating examples

We illustrate the practical application of this method in the
special case of the LVM in Fig. 2(a) where protein product
of gene X affects gene Y, while both are under regulation



Algorithm 1 Estimation of an identifiable causal query
Input M, a trained causal LVM with an exact sampling
based inference algorithm

x’ C v, target values of the intervention

Y C V, effects of the intervention

Qx = P(Y|do(x)) or E[Y |do(x)], causal query
Param S, # of samples from the posterior distribution
Output P, (Y|do(X = x')) or E, [Y]do(X = x')]

1: Check identifiability of Q, e.g. with Y}

2: if Q) is not identifiable then

3: break

4: else

5: Set X = x’

6: Create M %, the mutilated model

7: for sin 1:5 do

8: Sample 05 ~ Py, O{vi}¥,))

9: for W in topological-sort({U U V}) do
10: Sample ws ~ Py (W[Pa(W);0s)
11: end for
12: Collectys C wy

13: end for

14:  Return density ({y,}5_,) or & Sy
15: end if

of the same transcription factor(s) and/or enhancer(s). The
causal query P(Y|do(X = z’)) is not identifiable, and
we show empirically that its LVM-based estimator is bi-
ased. We then extend the causal LVM with a mediator Z
in Fig. 2(b), such that the query becomes identifiable ac-
cording to the front-door criterion. This occurs frequently
in transcriptional cascades which involve multiple steps, or
signaling pathways in which Y is not a direct substrate of X.
We show empirically that the estimate of P(Y |do(X = 2'))
converges to the true distribution.

Empirical example 1: Fig. 2(a) Assume a model M: U :=
01, X :=U0x + 0%, Y := X0y + Ul + 0% where
O ~ Nty 0%). 0y ~ N(iy.0h), 0 ~ N(upy,ot,)
and a non-identifiable causal query of P(Y|do(X = z')).
We generated observational data with N = 10, 100 samples
from the likelihood with a randomly chosen vector of true
values of 8. The true P(Y|do(X = z');0) was estimated
with Algorithm 1, where line 8 was substituted by the true
values of 8 (black curves in Fig. 2(c-f)).

To learn a model M from this training data, we as-
sumed a Gaussian prior on the parameters: fif;, ity , pts ~
N(0,1),0(,0%,0% ~ N(0,1),0%y,0;y ~ N(0,10),
and 67, ~ N(0, 1), and trained the model with HMC. Thin
lines in Fig. 2(c.e) estimate Py (Y[do(z'), {xi,y:}{L1,6)
for each sampled . As N increases, the distributions be-
came less diverse, but did not approach the ground truth.

Empirical example 2: Fig. 2(b) Expanding the previ-

ous example with a mediator Z, we assume a model
U := 0y, X = Ubyx +0x, Z := XOxz + 0z,
Y = ZO0zy + Ubyy + 0y where, 0y ~ N(uy,ou),
Ox ~ N(ux,0x),0y ~ N(uy,oy),07 ~ N(uz,0z).

With this expansion, the causal query P(Y|do(X = z’)) be-
comes identifiable. Repeating the same analysis, Fig. 2(d,h)
show that, as IV increased, the distributions converged to
the ground truth.

3.3. Proofs

In this part, Lemma 1 proves the empirical results of ex-
amples 1 and 2 for the same LVM in Fig. 2(a) and (b) but
with arbitrary distributions. Then, Theorem 1 proves that
in general for any identifiable causal query, Algorithm 1
accurately estimates causal queries in an LVM that correctly
reflects the true underlying causal structure of the observed
variables. Finally, Corollary 1 proves that the results of
Theorem 1 holds for LVMs with misspecified number of
latent variables.

Lemma 1 Consider the LVM in Fig. 2 (b) with a DAG G. X,
M, and'Y are observed and U are latent. The front-door
adjustment estimand of the query P(Y'|do(x")) is equivalent
to the estimand of that query in the mutilated LVM.

Proof. Consider a mutilated version of GG, G, where all
the incoming edges to X are removed. A causal query
P(Y|do(x")) transforms P(.) into a distribution Pk (.), and
P(Yl|do(x")) = Px(Y|x’). Hence,

P(Y|do(x')) = Pg(Y|x) = / Px (Y, u,z|x")dudz

:/z (/upxmu,z,x')PX(uz,x’)du> Py (2|x')dz
= [ P(v o) (e

:/ZP(Y|do(z))P(z\x’)dz )
:/Z (/X P(Yz,x)P(x)dx) P(2|x)dz @)

Eq. (1) holds because in Gk, Y is independent from X given
Z. Since Px(z|x') is unaffected by the mutilation of G,
Px (z|x") = Pg(z|x'). Eq. (2) follows from the back-door
path between Y and Z in G. The expression on the right-
hand side of Eq. (2) is the estimand for P(Y |do(x")) derived
from the do-calculus front-door adjustment formula. O

Next we demonstrate that this result holds in all generality
for any identifiable causal query.

Theorem 1 Consider a causal LVM M, which includes
the true likelihood that generated the observational data.



Consider a causal query Qx = P(Y|do(x)) or Qx =
E[Y|do(x)), identifiable according to the do-calculus with
respect to M. When estimating the causal query as in
Algorithm 1, the estimate P(Y |do(x)) converges to the true
distribution, and the estimator E[Y |do(x)] is consistent.

Proof. When the ground truth parameters ¢ are known,
samples from the likelihood vs ~ P(V|Pa(V'),8) for all
V' € V converge to the true joint observational distribution
[Ivev P(V|Pa(V),0) as N — oo. N is the number of
data points.

In practice parameters of the LVM are trained on observa-
tional data. If the parameters are not identifiable during train-
ing, their posterior distribution 6, ~ P(0|{v;}X,) is not
guaranteed to converge to the true value. Nonetheless, sam-
ples from the observed variables vs ~ P(V|Pa(V),0,),
V' € 'V, converge to the same true joint observational dis-
tribution [ ], .y P(V|Pa(V),0). For identifiable causal
queries, all parametrizations that agree on the joint ob-
servational distribution agree on the queries (Shpitser &
Pearl, 2008). Therefore, since under stability conditions
exact inference algorithms provide guarantees of asymptot-
ically exact samples, the posterior predictive distribution
P(Y goxy[{vi}L,) converges to the true distribution, and
its expected value E[Y go(x)|[{vi}L,] is consistent (Gel-
man et al., 2014). ]

Finally, we show that the LVM does not need to include a
precise specification of the latent variables, as long as the
misspecified LVM and the true LVM project to the same
ADMG and agree on the joint observational distribution.

Corollary 1 Consider a causal LVM M, which includes
the true likelihood that generated the observational data.
Consider a class of LVMs M that projects on the same
ADMG as M. Consider a causal query Qx = P(Y |do(x))
or Qx = E[Y|do(x)], identifiable according to the do-
calculus with respect to M. When estimating the causal
query as in Algorithm 1, the estimate P(Y|do(x)) con-
verges to the true distribution, and the estimate E[Y |do(x)]
is consistent.

Proof. Let 6 be the parameters of M’ € M. Follow-
ing the same logic as in proof of Theorem, the samples
vl ~ P(V|Pa(V),0.),V € V, converge to the same true
joint observational distribution [ [, oy, P(V|Pa(V),0) as
for the correctly specified model M. Therefore, the poste-
rior predictive distribution converges to the true distribution,
and its expected value is consistent. [

3.4. Implementation and computational complexity

We implemented the identification algorithm (Shpitser &
Pearl, 2006) in the Y|, causal reasoning engine, an open-

source Python software package available under the per-
missive BSD license, using modern software engineering
practices such as unit testing, linting, and continuous in-
tegration. Y[ is available at https://github.com/
y0-causal-inference/y0. It overcomes each of the
previously described limitations of the previous implementa-
tions. Yy takes as input a causal LVM and a query, and deter-
mines whether the query is identifiable according to Pearl’s
do-calculus. Documentation is available through ReadThe-
Docs and demos as Jupyter notebooks. Determining the
identifiability was nearly-instant for all the case studies in
this manuscript. To further examine the scalability of Y to
larger systems, we ran it on over 2,100 larger networks with
77 nodes each. The whole experiment took 13 minutes and
26 seconds, or about 0.23 seconds for each identification
testing.

The proposed approach is based on ad hoc training of each
individual LVM. While training an LVM is NP-complete
(and in practice depends on the specific LVM and on the
choice of inference algorithm), the proposed approach amor-
tizes most of the computational work into this single training
step. Given a single trained model, Algorithm 1 can estimate
an arbitrary number of queries. All the experiments in this
manuscript, including the ad-hoc implementations of Al-
gorithm 1, are in https://github.com/srtaheri/
LVMwithDoCalculus . The case studies took between
1.5 minutes and 1.8 hours on a Google Cloud Platform.

4. Case studies
4.1. Overview

We illustrate the practical utility and the accuracy of the
LVM-based estimation of identifiable causal queries in
four case studies of biomolecular pathways with varying
complexity. The first case study considers a common net-
work motif in the transcriptional regulatory network of Es-
cherichia coli. Despite the commonality of its structure,
its causal query cannot be estimated with the existing non-
LVM approaches due to the presence of multiple causes.
The second case study is another transcriptional regulatory
network of Escherichia coli, where it is not possible to block
the back-door path between the cause and effect, and the
front-door criteria does not hold. As the result, the causal
query cannot be estimated with most non-LVM estimators.
The third case study represents an insulin-like growth fac-
tor(IGFR) signaling network, where data are generated from
a stochastic process with uncharacterized distributions, yet
can be approximated by the LVM. The last case study is
a larger-scale molecular biology expert system of host re-
sponse to viral infection of SARS-CoV-2, where the LVM
is trained once, and used to estimate two distinct causal
queries of interest.
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To reflect the heterogeneity of distributions observed in
biomolecular datasets, we avoid making specific assump-
tions regarding the distribution of each variable in the model,
and instead incorporate a mix of distributions in each of our
case studies. Each case study (except study 3) specified
randomly selected true values of , and simulated 20 obser-
vational and 20 interventional datasets. All the parameters
had non-informative A/ (0, 10) priors. The parameters re-
garding the mean of latent variables in case study 4 have
N (u, 1) priors where i is between 20-45. Posterior distri-
butions of the parameters were inferred with HMC in Stan
(Team, 2018).

The causal queries were of the form Qx = E[Y|do(X)].
The true value ()x was obtained by averaging samples from
the interventional datasets with the true 6. For each obser-
vational dataset, Qx was estimated as in Algorithm 1. To
evaluate the robustness of Qx to model misspecification,
we also considered LVMs with a wrong number of latent
variables but same ADMG.

For each case study, we simultaneously checked the identifi-
ability of the causal queries and generated their correspond-
ing estimand using our implementation of the identification
algorithm in Yj.

4.2. Case study 1: The feed-forward transcriptional
regulatory network motif

The system The famous feed-forward loop is an exam-
ple of a common network motif in E. coli and many other
prokaryotes (Alon, 2019). For this case study, we con-
sider the causal effect of marA, soxS and opmR on ypiT
in the multi-node generalization of the feed-forward net-
work motif shown in Fig. 3(a). This network satisfies the
back-door criterion when rob is latent, and satisfies the
front-door criterion when the variables Irp and crp are la-
tent, but cannot be identified when lrp, crp and rob are
latent. To demonstrate the ubiquity of this motif, we queried
the EcoCyc database (Keseler et al., 2013; 2017) to dis-
cover which front door motifs with one or more confounders
and one or more causes exist in E. coli, all 1945 of which
are available at https://ecocyc.org/group?id=
biocycl4-15682-3843672784.

LVM To demonstrate that causal effects on the front-door
network motif can be identified even when the number of
latent confounders U are misspecified, we generated data
from an LVM with 3 causes (marA, soxS and ompR) and
two latent variables (Irp and crp). We then used that data to
train an LVM with the correct number of causes and latent
variables, and a misspecified LVM with the correct number
of causes, but only one latent variable.

Data were generated from the true model where the latent
variables were Gaussian and the remaining variables fol-

lowed a Bernoulli distribution with logit parameterization.

Estimates Qmar A,s0sX,0ompR (Fig. 3(d)) based on mutilat-
ing the trained LVM with the correct topology had less
variance than the estimates from the misspecified mutilated
LVM. However both estimates converged to the true value
as N increased.

4.3. Case study 2 : The Napkin motif

The system in Fig. 3(b), called the second Napkin prob-
lem by (Pearl & Mackenzie, 2018), requires a non-trivial
application of the do-calculus, as we cannot block the back-
door path from Irp to topA because hns is a collider and
gadF is an ancestor of a collider, and the front-door crite-
rion does not hold because there is no mediator between
Irp and topA (Helske et al., 2021; Hughes et al., 1998;
Pearl & Mackenzie, 2018; Jung et al., 2020). The causal
estimands that these kinds of queries generate are diffi-
cult to estimate using statistical methods (Bhattacharya
et al., 2020; Schulman & Srivastava, 2016). To investi-
gate the ubiquity of this motif, we queried the EcoCyc
database (Keseler et al., 2013; 2017) to discover all nap-
kin motifs with two or more confounders, all 911 of which
are available at https://ecocyc.org/group?id=
biocycl14-15682-3844537443. We are interested in
the causal effect of knocking out [7p on topA, so we model
Irp as a binary variable. We also assume that hns is mea-
sured with a fluorescent reporter, so we model the expression
of hns with a gamma distribution. Lastly, we assume that all
the other genes are measured using relative expression, such
as RT-PCR, so we model them with Gaussian distributions.

LVM with the correct topology had one latent variable be-
tween hns and [rp and one latent variable between hns
and topA. The LVM with misspecified topology had one
latent variable between hns and [rp, but two latent variables
between hns and topA.

Data were generated from the model where dsr, fis, gadE
and topA were simulated from a Gaussian, and hns from
a Gamma distribution. [rp was simulated from a Bernoulli
distribution with logit parametrization.

Estimates erp = E[topA|do(lrp)] performed as in case
study 1. In this case, the misspecified model did better than
the correctly specified model, likely due to the additional
degrees of freedom afforded by the second latent variable.

4.4. Case study 3: The signaling model

The system in Fig. 3(c) is a well-studied insulin-like
growth factor signaling system regulating growth and energy
metabolism of a cell (Zucker et al., 2021). It is activated
by external stimuli IGF and EGF. Nodes in the system are
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Figure 3. Case studies 1-3. DAGs labeled as in Fig. 2. Red nodes are targets of the intervention, orange nodes are the effect.
(a) The multi-cause feed-forward transcriptional regulatory network motif. (b) The Napkin network motif. (c) The signaling
model. Nodes are proteins, pointed/flat-headed edges are relationships of type increase/decrease. (d) Sampling distribution of
Qx = E[ybiT|do(marA, sosX,ompR = 0)] over 20 observational datasets. (e) As in (d), Qx = E[topAldo(lrp = 0)]. (f)
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Figure 4. Case study 4. Legends are as in Fig. 3. (a) The SARS-CoV-2 model. Dotted edges indicate presence of latent variables. sSILORc
and EGFR are targets, Cytokine Storm is the effect. (b) Qx = E[Cytokine|do(sI L6 Ra = 20)]. (¢) Qx = E[Cytokine|do(EGFR =
20)].

proteins, and edges are the effect of the upstream protein on

the downstream protein’s activity. IGF and EGF are latent.

Qx = E[Erk|do(SOS = 70)]. This query does not satisfy
the back-door or the front-door criteria.

LVM represented the biomolecular reactions with a Hill

function, as common in the biological practice (Alon, 2019),
and approximated them with a sigmoid. We modeled the
root nodes with a Gaussian distribution and the non-root

nodes with N (o207 parxy sy » 0 X )- Foranode X with

g parents, Pa(X) was a ¢ x 1 vector of measurements on
the parent nodes, #7 was a 1 x ¢ vector of unknown pa-



rameters, and 6, was an unknown scalar parameter. The
non-informative N (0, 10) priors of the parameters 6 in the
sigmoid had a constraint of being positive for the relation-
ships of type increase and negative for relationships of type
decrease. The LVM with misspecified topology had a simi-
lar structure, but only including EGF as latent and omitting
IGF.

Data mimicked the experimental process of collecting obser-
vational and interventional data. Since dynamics of this sys-
tem are well characterized in form of stochastic differential
equations (SDE) (Bianconi et al., 2012), we generated obser-
vational data by simulating from the SDE. We set the initial
amount of each protein molecule to 100, and generated sub-
sequent observations via the Gillespie algorithm (Gillespie,
1977) in the smfsb (Wilkinson, 2018) R package. Repli-
cates were generated by randomly initializing EGF and IGF.
Interventional data were generated similarly, while fixing
SOS=70. Therefore, unlike in the other case studies, the
LVM did not exactly represent the data generation process,
but only approximated it.

Estimates Qx performed performed similarly to the previ-
ous case studies.

4.5. Case study 4: The SARS-CoV-2 model

The system (Fig. 4(a)) showcases the ability of a causal
LVM to estimate multiple causal queries after a single in-
stance of training. It models activation of Cytokine Release
Syndrome (Cytokine Storm), known to cause tissue dam-
age in severely ill SARS-CoV-2 patients (Ulhaq & Soraya,
2020). The simultaneous activation of the NF-xB and IL6-
STAT3 activates IL6-AMP, which in turn activates Cytokine
Storm (Hirano & Murakami, 2020).

The network was extracted from COVID-19 Open Research
Dataset (CORD-19) (Wang et al., 2020) document corpus
using the Integrated Dynamical Reasoner and Assembler
(INDRA) (Gyori et al., 2017) workflow (Zucker et al.,
2021), and by quering and expressing the corresponding
causal statements in the Biological Expression Language
(BEL) (Slater, 2014) using PyBEL (Hoyt et al., 2018). Pres-
ence of latent variables was determined by querying pairs
of entities in the network for common causes in the corpus.

Causal queries examined the ability of two different drugs
to prevent Cytokine Storm. Tocilizumab (Toci) is an
immunosuppressive drug that targets sIL6Ra and blocks
the IL6 signal transduction pathway (Zhang et al., 2020).
The first causal query examined the effect of Toci by
setting its target sSILORa=20 (low value), i.e. @Qx =
E[Cytokine|do(sIL6Ra) = 20)]. The query is identifi-
able using the backdoor criterion. The drug Gefitinib (Gefi)
blocks EGF R. The second causal query examined the ef-
fect of Gefi, i.e. Qx = E[Cytokine|do(EGFR) = 20)].

The query is not identifiable via either the backdoor or the
front-door criterion, but is identified via the do-calculus.

LVM with the correct topology contained two latent
variables between (SARS-CoV-2 and Angiotensin II),
(ADAM17 and sIL6R«), and (PRR and NF-xB), and one
latent variable for each remaining dotted edge in Fig. 4(a).
Relationships between the nodes were modeled as in case
study 3. The LVM with misspecified topology had only one
latent variable for each dotted edge.

Data were generated from the model with a true 6, and the
nodes were simulated with a Hill function as discussed in
case study 3. Cytokine storm had a Bernoulli distribution
with logit parameterization.

Estimates Qx (Fig. 4 (b-c)) performed as in the other case
studies.

5. Discussion

A major criticism of traditional pathway modeling is its
inability to account for external influences on pathway com-
ponents. This is particularly relevant to causal inference, as
ignoring the effect of unobserved confounding can produce
inaccurate results. This manuscript offers an alternative to
measuring every molecular component of the cell. By ac-
knowledging the existence of latent variables, and applying
Pearl’s do-calculus, we can determine whether the causal
effect can be identified. We further show that LVM-based
estimation of identifiable causal queries is successful even
in situations that challenge other statistical estimators, e.g.
in presence of interventions on continuous variables, and
queries with multiple causes and effects. The estimation is
robust to latent variable misspecification, and to parametric
approximations of complex processes of data generation.
As all these situations are very common, the proposed ap-
proach expands the feasibility scope of causal inference in
biomolecular pathways.

Real biological experiments present many challenges. The
underlying data generating process may contain cycles, data
may be missing not at random, there may be selection bias
and other batch effects, and in vitro data may differ signif-
icantly from in vivo measurements (Bareinboim & Pearl,
2016; Sherman et al., 2020; Nabi et al., 2020; Forré & Mooij,
2019). While future work will address these threats to va-
lidity, we have systematically taken several steps towards
practical use. We evaluated the accuracy of our approach on
real biological pathways (Gyori et al., 2017; Ostaszewski
& Niarakis, 2021) in the context of a complex environment
that contains many unobserved confounders, and proposed
the open-source Y, implementation to determine when a
causal query is still identifiable according to the do-calculus.
The LVMs are compatible with realistic probability distri-
butions describing diverse regulatory events. Parameters



of LVMs must be estimated from experimental data with
a sufficient number of replicates, and modern single-cell
technologies make these data types increasingly available.

The proposed approach opens the door to many directions
of future methodological research, and to many applications.
For example, LVMs can directly incorporate informative
priors regarding latent variables, or regarding the processes
that govern the regulatory events, thus improving model ac-
curacy. The estimation of parameters of latent variables can
help us characterize pathway components even when they
are unmeasured. Further implementation improvements can
help address the remaining limitations of LVM-based causal
query estimation. In particular, Y can be more tightly inte-
grated with the LVM-based estimation, enabling automated
estimation of general classes of LVM. For LVMs, a limita-
tion is the requirement for parametric assumptions, which
can introduce a bias when the assumptions are not justified.
These difficulties may be navigated with traditional model
evaluation techniques, such as posterior predictive checks,
model selection, and relying on Occam’s Razor to favor the
simplest LVM.

Overall, although molecular biology is in a golden age of
intense data accumulation, the problem of unmeasured con-
founders remains. In this context, we believe that LVM-
based estimation of causal queries and its future extensions
will have a strong impact.
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